Skip to main content

Types of Sorting-IMPORTANT CONCEPTS

1) Bubble Sort
Algorithm: 
1.Traverse the array from i=0 to length-2
2. Inside it traverse the array from j=0 to length-2-i
2.1. If a[j]>a[j+1], swap them

Code:
import java.util.*;
import java.lang.*;
import java.io.*;

class GFG {
public static void main (String[] args) {
Scanner sc = new Scanner (System.in);
int m = sc.nextInt();
for(int mi=0;mi<m;mi++){
   int n = sc.nextInt();
   int a[]= new int [n];
   boolean swapped=false;
   for(int i1=0;i1<n;i1++){
       a[i1]=sc.nextInt();
   }
   for(int i=0;i<n-1;i++){
       for(int j=0;j<n-1-i;j++){
           if(a[j]>a[j+1]){
               int temp=a[j];
               a[j]=a[j+1];
               a[j+1]=temp;
               swapped=true;
           }
       }
  if(swapped==false){break;}     
   }
   for(int j=0;j<n;j++){
       System.out.print(a[j]+" ");
   }
   System.out.println();
}
}

}
Time complexity: O(n*n)

2. Selection sort:

Algorithm:
for i=0 to length-2
 minIndex=i;
  for j = i+1 to length-1
    if(data[j]<data[minIndex])
    minIndex=j;
 swap them

Code:

import java.util.*;
import java.lang.*;
import java.io.*;

class GFG {
public static void main (String[] args) {
Scanner sc = new Scanner (System.in);
int m = sc.nextInt();
for(int mi=0;mi<m;mi++){
   int n = sc.nextInt();
   int a[]= new int [n];
   
   for(int i1=0;i1<n;i1++){
       a[i1]=sc.nextInt();
   }
   for(int i=0;i<n-1;i++){
       int min=i;
       for(int j=i+1;j<n;j++){
           if(a[j]<a[i]){
               min=j;
               int temp=a[j];
               a[j]=a[i];
               a[i]=temp;
               
           }
       }
   
   }
   for(int j=0;j<n;j++){
       System.out.print(a[j]+" ");
   }
   System.out.println();
}
}

}

Time complexity: O(n*n)

3) Selection Sort:

Algorithm:

for i =0 to length-1
 current=a[i]
 j=i-1
 while j>=0 && a[j]>current
  a[j+1]=a[j];
  j=j-1;
a[j+1]=current;

Code: import java.util.*;
import java.lang.*;
import java.io.*;

class GFG {
public static void main (String[] args) {
Scanner sc = new Scanner (System.in);
int m = sc.nextInt();
for(int mi=0;mi<m;mi++){
   int n = sc.nextInt();
   int a[]= new int [n];
   
   for(int i1=0;i1<n;i1++){
       a[i1]=sc.nextInt();
   }
   for(int i=0;i<n;i++){
       int current=a[i];
       int j=i-1;
       while(j>=0 && current<a[j]){
           a[j+1]=a[j];
           j=j-1;
       }
       a[j+1]=current;
   }
   for(int k=0;k<n;k++){System.out.print(a[k]+" ");}
   System.out.println();
}
}
}

Execution Time: O(n*n)

4) Merge Sort

Algorithm: 
MergeSort(A,start,end)
  if start<end
  middle=floor(start+end)/2
  MergeSort(A,start,middle)
  MergeSort(A,middle+1,end)
  Merge(A,start,middle,end)
Merge Algorithm:
Merge(A,start,mid,end)
n1=mid-start+1
n2=end-mid
for i=0 to n1-1
left[i]=a[start+i]
for j=0 to n2-1
right[j]=a[mid+1+j]
i,j=0
for k=start to end
 if left[i]<=right[j]
 a[k]=left[i]
 i++
 else a[k]=right[j]
 j++

CODE:

class MergeSort
{
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
void merge(int arr[], int l, int m, int r)
{
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;

/* Create temp arrays */
int L[] = new int [n1];
int R[] = new int [n2];

/*Copy data to temp arrays*/
for (int i=0; i<n1; ++i)
L[i] = arr[l + i];
for (int j=0; j<n2; ++j)
R[j] = arr[m + 1+ j];


/* Merge the temp arrays */

// Initial indexes of first and second subarrays
int i = 0, j = 0;

// Initial index of merged subarry array
int k = l;
while (i < n1 && j < n2)
{
if (L[i] <= R[j])
{
arr[k] = L[i];
i++;
}
else
{
arr[k] = R[j];
j++;
}
k++;
}

/* Copy remaining elements of L[] if any */
while (i < n1)
{
arr[k] = L[i];
i++;
k++;
}

/* Copy remaining elements of R[] if any */
while (j < n2)
{
arr[k] = R[j];
j++;
k++;
}
}

// Main function that sorts arr[l..r] using
// merge()
void sort(int arr[], int l, int r)
{
if (l < r)
{
// Find the middle point
int m = (l+r)/2;

// Sort first and second halves
sort(arr, l, m);
sort(arr , m+1, r);

// Merge the sorted halves
merge(arr, l, m, r);
}
}

/* A utility function to print array of size n */
static void printArray(int arr[])
{
int n = arr.length;
for (int i=0; i<n; ++i)
System.out.print(arr[i] + " ");
System.out.println();
}

// Driver method
public static void main(String args[])
{
int arr[] = {12, 11, 13, 5, 6, 7};

System.out.println("Given Array");
printArray(arr);

MergeSort ob = new MergeSort();
ob.sort(arr, 0, arr.length-1);

System.out.println("\nSorted array");
printArray(arr);
}

}

EXECUTION TIME: O(nlogn) (average case)

5) Quick Sort:

Algorithm:

QuickSort(a, start, end) 
 if start<end
 pivot=Partition(a,start,end)
 QuickSort(a,start,pivot- 1)
 QuickSort(a,pivot+1,end)

Partition Algorithm:

Partiton(a,start,end)
 pivot=a[end]
 i=start
  for j=i to end-1
   if a[j]<=pivot
      exchange a[i] with a[j]
      i++ 
  exchange a[i] with a[end]
return i

Code:

import java.util.*;
public class Solution {
       
static int partition(int[] a,int start,int end) {
        int pivot=a[end];
        int i=start;
       for(int j=start;j<end-1;j++){
           if(a[j]<=pivot){
               int temp=a[i];
               a[i]=a[j];
               a[j]=temp;
               i++;
           }
       }
       int temp1=a[i];
       a[i]=a[end];
       a[end]=temp1;
    return i;
       } 
 static void QuickSort(int [] a,int start, int end){
     if(start<end){
        int  pivot=partition(a,start,end);
         QuickSort(a,start,pivot-1);
         QuickSort(a,pivot+1,end);
          printArray(a)   ;  
     }
    
 }

 static void printArray(int[] ar) {
         for(int n: ar){
            System.out.print(n+" ");
         }
           System.out.println("");
      }
       
      public static void main(String[] args) {
           Scanner in = new Scanner(System.in);
           int n = in.nextInt();
           int[] ar = new int[n];
           for(int i=0;i<n;i++){
              ar[i]=in.nextInt(); 
           }
           QuickSort(ar,0,n-1);
       }    

   }

EXECUTION TIME: O(nlogn)


Comments

Popular Posts

TARUNKUMAR RAWAT:Fourier Series and Fourier Transform

Tarunkumar Rawat Fourier Series: Click here to download Tarun Rawat Fourier Series Tarunkumar Rawat Fourier Transform: Click here to download TarunRawat Fourier Transform Steps to follow: 1) Click on the above link 2) Wait for 3 secs and click on the link 3) Wait for 5 secs and click on skip ad NOTE: We do require these ads to fund the site and provide books for free. Besides these are harmless and just require 5 secs waiting and nothing else. Please be patient for 5 secs and get your desired book for FREE!  IMPORTANT: We believe that every author deserves some respect and the same should be shown towards them by purchasing the books and lauding the efforts of author. Hence we recommend to buy the book. You can buy the book for an affordable rate in given below link: Using of PDF will be at your own risk and EXTC RESOURCES IS NOT RESPONSIBLE for any consequences of the same. We provide links for book and donot endorse piracy.  

Modern Digital and Analog Communication (BP Lathi,3rd ed)

Another Analog communication book: Modern Digital and Analog Communication (BP Lathi,3rd ed) : Click here to download Modern Digital and Analog Communication (BP Lathi,3rd ed) Copyright Disclaimer: This site does not store any files on its server. We only index and link to content provided by other sites. Please contact the content providers to delete copyright contents if any and email us, we'll remove relevant links or contents immediately.

Numerical methods with MATLAB

For Numerical methods along with MATLAB the best book is: Chapra Applied Numerical Methods MATLAB Engineers Scientists 3rd edition : Click here to download Steven Chapra with MATLAB For altenate link : Click here to download Steen Chapra with MATLAB